DNA Structure and Discovery

- (6) Science concepts. The student knows the mechanisms of genetics, including the role of nucleic acids and the principles of Mendelian Genetics. The student is expected to:
 - (A) identify components of DNA, and describe how information for specifying the traits of an organism is carried in the DNA;
 - (B) recognize that components that make up the genetic code are common to all organisms

Vocabulary

- Nucleic Acid
- Nucleotide
- Base pairing
- Complementary
- Template Strand
- Semiconservative

Prerequisite Questions

- 1. What are the monomer molecules that make up nucleic acids?
- 2. What are the 3 structures of a nucleotide?
- 3. What is the purpose of DNA?

Essential Question #1

• How was DNA determined to be the hereditary molecule?

History of DNA

- 70 years ago, DNA was a mystery to most scientists
- Scientists knew of its existence, but not of its purpose.
- The following slides are just some of the major experiments that helped to define the role of DNA in biology

Erwin Chargaff (1950)

 Common knowledge that nucleotides consist of phosphate group, a sugar and a nitrogenous base.

 Compared composition of the 4 bases between many different organisms.

Source	Adenine	Guanine	Cytosine	Thymine
E. coli	24.7%	26.0%	25.7%	23.6%
Wheat	28.1	21.8	22.7	27.4
Sea urchin	32.8	17.7	17.3	32.1
Salmon	29.7	20.8	20.4	29.1
Human	30.4	19.6	19.9	30.1
Ox	29.0	21.2	21.2	28.7

© 2011 Pearson Education, Inc.

Erwin Chargaff (1950)

- Stated what we know today as Chargaff's Rules.
 - Only certain bases pair up.

- Adenine pairs with Thymine
- Guanine pairs with Cytosine.

Rosalind Franklin (1952)

- Used an X-ray technique to photograph DNA
- Saw that DNA had:
 - 2 spiraling components
 - Fixed width
 - Alternating "rung" pattern

(a) Rosalind Franklin

(b) Franklin's X-ray diffraction photograph of DNA

© 2011 Pearson Education, Inc

Watson and Crick (1953)

- Used evidence from previous scientists to build a model of DNA.
- Won the Nobel prize in 1962

© 2011 Pearson Education, Inc.

Essential Question #2

• Why is DNA replication essential to the cell cycle?

Nucleotide structure

• Nucleotides are the monomers that make up the Nucleic Acid polymer.

DNA structure

- DNA is a double helix
- The "backbone" is made of alternating phosphate groups and deoxyribose sugars
- The bases in the middle pair A to T and G to C

Nitrogenous Base Pairing

Chargaff's Rules
Adenine pairs with Thymine

Guanine pairs with Cytosine

Forms of Eukaryotic DNA

• Eukaryotic DNA comes in two forms:

1) **Chromatin** – nucleic acid strands are unwound and in a "spaghetti" arrangement

• Found only during Interphase

2) **Chromosome** – nucleic acid strands are tightly wound around histone proteins, and folded on scaffolding proteins

• Found only during Mitotic stages

Prokaryote vs. Eukaryote DNA

- Prokaryotes have a single loop of DNA
- Eukaryotes have multiple strands/strings of DNA

