Non Mendelian Genetics

TEKS

6 Science concepts. The student knows the mechanisms of genetics, including the role of nucleic acids and the principles of Mendelian Genetics. The student is expected to:

6F predict possible outcomes of various genetic combinations such as monohybrid crosses, dihybrid crosses and nonMendelian inheritance;

Vocabulary

- Genetics
- Heredity
- Hybrid
- Monohybrid
- Dihybrid
- Gene
- Trait
- Allele
- Dominant allele
- Recessive allele
- Homozygous
- Heterozygous
- (F1 generation)
- (F2 generation)
- Phenotype
- Genotype
- True-breeding
- Incomplete Dominance
- Co-dominance
- Sex-linked trait

Prerequisite Questions

1. Where does an organisms get its genes from?
2. What does it mean for a trait to be dominant or recessive?

Essential Question

- What happens if a trait does not follow complete dominance rules?

Dihybrid Crosses
Poly-Genic Traits
Multiple-Allele Traits
Sex-linked Traits
Incomplete Dominance
Co-Dominance

Pea traits that Mendel identified

- Through multiple crosses, Mendel determined that all these traits displayed a mathematical predictability for inheritance.

	Seed Shape	Seed Color	Seed Coat Color	Pod Shape	Pod Color	Flower Position	Plant Height
P	Round X Wrinkled	Yellow X Green	Gray X White			Axial Terminal	
F_{1}	Round	Yellow	Gray	Smooth	Green	Axial	$\begin{gathered} 5 \\ \text { Tall } \\ \text { der } \end{gathered}$

Law of independent assortment

- Because organisms are made up of more than one trait, Mendel concluded that the inheritance of one trait does not influence the inheritance of a second trait.
- Example: Height of the pea plant does not influence the color of the peas
- Height is independently assorted from color.

Dihybrid Cross

Dihybrid cross - working with two traits (gives twice as many gametes possibilities, so 4 times as many offspring) classical ratio of 9:3:3:1

F_{2} Generation

Using dihybrid crosses to show independent assortment

- A smooth, yellow pea (RrYy) can pass on these combinations of genes to its offspring: RY, Ry, rY, or ry.

Results
round-yellow: round-green : wrinkled-yellow: wrinkled-green

$$
9: 3: \mathbf{3}: \mathbf{1}
$$

Incomplete dominance

- Both alleles for a trait blend together creating a new expression in the heterozygous condition
- examples: snapdragons

Variations on Mendel

- Incomplete dominance: the heterozygous genotype shows a blend of the two parents and not the dominant allele

Co-dominance

- Both alleles for a trait show up equally
- Examples: roans, "checkered" chickens

Variations on Mendel

- Codominance: the heterozygous genotype shows both inherited alleles
- Example of roan horse coat: AA (dark red) x aa (white)
\rightarrow Aa (dark red and white)

Complete, Incomplete and Codominance Comparison

Cross two heterozygous individuals. Use the following alleles: A - black and \mathbf{a} - white.

Complete Dominance

Cross: $\mathbf{A a} \times \mathbf{A a}$

Punnett:

Ratios:
Genotype
AA - 25\%
Aa-50\%
aa -25%

Codominance

Cross: Aa x Aa

Punnett:

Ratios:
Genotype
Phenotype
Black - 25\%
Black \& White - 50\%
White - 25\%

Multiple alleles

- More than two alleles for a trait
- Examples: coat color of rabbits

Variations on Mendel

- Multiple alleles: when there are more than two alleles that code for a trait
- Example: ABO blood type

A type = AA or Ao
B type $=B B$ or Bo
O type $=00$
$A B$ type $=A B$

Parents: AO X BO

Blood typing

(a) Phenotype (blood group)	(b) Genotypes (see p.258)	(c) Antibodies present in blood serum	(d) Results from adding red blood cells from groups below to serum from groups at left
			$\begin{array}{llll}A & B & A B & \end{array}$
A	$\begin{gathered} I^{A} I^{A} \\ \text { or } \\ I^{A} i \end{gathered}$	Anti-B	
B	$\begin{gathered} I^{B} I^{B} \\ \text { or } \\ I^{B} i \end{gathered}$	Anti-A	
$A B$	$I^{A} I^{B}$	-	
0	ii	Anti-A Anti-B	

Copyright \& Pearson Education, Inc., publishing as Benjamin Cummings.

Polygenic inheritance

- Many genes affect the expression of the trait
- Examples: skin, eye, \& hair colors

X-linked or Sex linked

- Allele is carried on the X chromosome
- Because females have 2 X chromosomes, often a mutated allele is hidden by the other healthy X
- Only Females can be carriers for X linked
- examples:
- Hemophilia, Color blindness, Male patterned baldness
- Usually written like this:
- XX - normal female
- $X X^{*}$ - carrier female (* designates some mutated allele)
- $X^{*} X^{*}$ - affected female
- X Y - normal male
- $X^{*} Y$ - affected male

- Sex-linked traits
- A recessive gene on the X chromosome
- Examples: color-blindness \& hemophilia
- Genotypes: Phenotypes:
- XY normal male
$-X^{n} Y$ colorblind male
- XX normal female
- XX ${ }^{n} \quad$ carrier female
- $X^{n} X^{n} \quad$ colorblind female

normal vision

"weak red"

"weak green"

Are you red-green color blind?

- Yes, if you have a difficult time distinguishing a number from this picture

Colored blindness - Sex linked

How could a girl become colorblind?

Hemophilia

Intermarriage caused the disease hemophilia to be inherited by many members of Europe's royal families.

Victoria was a carrier of the

 gene for hemophilia, a serious bleeding disorder

